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SECTION I

INTRODUCTION

1. BACKGROUND

Fracture mechanics presently provides the best available tools to

quantitatively assess the influence of preexistent cracks in structures.

Although fracture mechanics, as we now know it, is a relatively new tech-

nology (since the mid 1950s), the basic ideas were already presented by

Griffith (Reference 1) in the early 1920s.

Current linear elastic fracture mechanics (LEFM) concepts assume

that the stress intensity factor K, the parameter that relates load,

crack length, and geometry, controls fracture (K = Kc = constant at

fracture) and crack propagation (Reference 23).

Stress intensity factor calibrations are required for any fracture

or crack propagation analysis. Since crack tip analysis can be complex,

experimental K solutions often become necessary to verify or supplement

analytical or numerical solutions.

For complex type geometries and loading configurations which commonly

exist in aircraft structures, experimentation may be the primary method

to obtain a reasonably accurate and dependable solution. Conducting

experiments on actual parts and loadings is often a very difficult and

costly procedure.

The main motivation for this investigation was to find a technique

that may, in some cases, greatly reduce the experimental effort required

in order to obtain a K solution.

An analytical approach to determine the stress intensity factors K

was discussed by Bueckner (Reference 2) and Rice (Reference 3). They

showed that once the displacement field and stress intensity factors are

known for one geometry and loading configuration referred to subsequently

as Case 1, K may be obtained for any other loading (Case 2) applied to

the same crack geometry (References 4 through 8, 21). The method depends

mainly on the reciprocal theorem and strain energy expressions. A load

1
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and material independent weight function can be constructed to relate the

stress intensity factor, material properties, and crack length together

with crack surface opening (for more details see Part II and Appendix A).

The significant advantage of this procedure lies in the fact that

only the first problem (Case 1) needs to be solved directly. Construction

of the weight function for this case allows ready determination of K for

any other loading on the same crack geometry (Cases 2, 3, etc.). Stress

intensity factors may then be obtained for a variety of other specimen

loadings, some of which may be highly complex compared to the original.

In addition, the computational expenses are minimal because only a single

relatively simple load configuration needs to be calculated.

The only additional information required for any other case is the

stress distribution at the crack location for a noncracked body under the

load configuration in question. This stress distribution is available,

in many cases, from the static crack free stress analysis or can be

obtained with much less effort than a cracked body analysis requires.

2. PURPOSE

Although weight functions have been employed with analytical, finite

elements and other numerical methods, the author is unaware of attempts to

combine weight functions with experimental procedures.

The objective of this work was to show that the weight function idea

can assist the experimentalist by allowing him an opportunity to obtain

the stress intensity factor solution for a complex loading configuration

from the results of a simple experiment, and also to obtain K solutions

for a variety of loadings from a single set of experiments. This will

greatly reduce the complexity and scope of the experimental effort.

3. GENERAL APPROACH

The weight function procedure is demonstrated with experimental

results for an edge crack specimen.

2
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The reference (Case 1) problem has been chosen as an edge cracked

strip subjected to four-point bending. Crack surface displacement measure-

ments near the crack tip were obtained by a laser interferometric method

following the technique developed at the Materials Laboratory (References

9, 10, 19). These results gave the mode I stress intensity factor KI for

that case. Crack mouth opening measurements, using a clip gage, were

then used to construct the crack surface displacement function incor-

porating Orange (Reference 11) conic section approximation. These

experimental results were used to evaluate the weight function and predict

the stress intensity factor K1 for other cases, which were chosen to be

uniform tension and three-point bending. The results were compared with

the known solution given in References 12 through 14.

3
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SECTION II

THEORY

1. GENERAL ASSUMPTIONS

a. Linear elastic fracture mechanics (LEFM) applies i.e., the amount

of plasticity near the crack tip is relatively small

a < 0.1
a -

where rp is the radius of plastic zone. (See Hertzberg, Reference 15, and

Appendix B for a more detailed discussion.)

b. The problem is assumed to be purely two-dimensional; i.e., no

variations through the thickness are considered.

c. Body forces are assumed to be negligible.

d. Only pure Mode I crack openings will be discussed.

2. STRESS INTENSITY FACTOR

The stress intensity factor K is the LEFM parameter that relates load,

crack length and geometry. The LEFM approach to predicting crack growth

assumes that K controls:

a. Fracture (K = KC = constant at fracture)

b. Crack propagation due to fatigue

c. Crack propagation due to stress corrosion

Three modes of stress intensity factors are defined depending on the crack

tip opening mode (Figure 1). They may be stated as:

Mode I Opening K = lm 7F o (0=0) (1)
r-0 Y

Mode II Sliding KI I r /2 Tr a (0=0) (2)
r-O 0

Mode III Tearing KII I rn/iE a (0=0) (3)
rws

where crack tip coordinates are defined in Figure 2.

4
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yyy

MODE I MODE 11 MODE III
(Opening) (Sliding) (Tearing)

Figure 1. Crack Opening Modes

y yz

I 
-z

leading edge
of the crack

z

Figure 2. Crack Tip Stress Coordinates
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This work deals only with the opening Mode I, though it can be easily

extended to other "modes."

3. THE WEIGHT FUNCTION

The Mode I stress intensity factor KI under arbitrary loading, shown

in Figure 3, can be given as:

KI = fT.hdr +fAf'h'dA (4)

(see Appendix A and References 2 through 6 for detailed discussion).

where:

F is any path chosen around the body that includes all the
surface tractions and body forces,

A is the region defined by F,

T designates surface tractions,

KI is the Mode I stress intensity solution corresponding to the
loads T and f,

f are body forces,

h = h(xya) H 9(x,y,a) (the weight function) (5)
2KI  3a

n(x,y,a) is the crack vertical displacement for any chosen load
configuration (independent of T and f),

KI in the weight function, Equation 5, is the Mode I stress
intensity solution that corresponds to the q solution, and

J E for plane stress
H E+ for plane strain.

1-V

The weight function h is independent of the loads T, f, and material

properties and can be calculated for the same geometry from another known

solution of KI and aqn/aa.

6
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a / Tls)

Figure 3. Cracked Body Loading Configuration

Using the principle of superposition of linear elasticity, the

calculations of the stress intensity factor considering the case of a

cracked body under a certain loading configuration is equal to the case

of the cracked body where only the crack surface is subjected to tractions

p(x) (coordinates are chosen so that the crack is in x direction). Here

p(x) is the stress ay that will occur at the crack location for an

uncracked body subjected to the original loading configuration. This idea

is demonstrated in Figure 4.

If one chooses the path r as any path that includes the crack surface

and, for simplicity, takes a straight crack in the x-direction as in

Figure 4 (the last assumption is not essential and is used only to simplify

the equations), then Equation 4 for KI can be stated as:

K, - f  h(x,a)p(x)dx - ahlxalp(X)cbc (6)

Reversing the integration limits and adding the two integrals we get:

KI  f 2 h(x,a)p(x)dx (7)

0

7
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A B + C

Figure 4. Superposition

K 1 ®0= K 1 G + K I@

Part B can be viewed as a noncracked body; therefore,

K I®@ =0 0 K ® KG=YI

The unknown stress intensity solution for the loading p(x) is con-
sidered Case 2, and the known solution, from which the weight function
will be computed, is taken as Case 1. Then Equation 7 can be written as

a
K 21 h& x, a)p& x) dx (8)

and from Equation 5

h/-.4, a)(9)h~~x~) = 2L 3

8
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If Equation 9 is substituted into Equation 8, the result is:

= f (xa) dx (10)K(2)= KI(l) p x0

where

is the Mode I stress intensity factor to be
found,

p W@ is the stress ay at the crack location for a

noncracked body with loading configuration of
Case 2,

K is the Mode I stress intensity factor for
'QV Case 1 and will be determined experimentally,

and

an is the derivative with respect to crack length
of the crack opening profile for Case 1. n is
also determined experimentally.

4. K CALIBRATION BY CRACK TIP DISPLACEMENT

The crack tip displacement field is defined by the following relations

that represent the elasticity solution for the stress-displacement field

in terms of K near the crack tip of a cracked body. One can take these

displacement expressions for Mode I opening (References 17, 18, 10) as:

K / s i n 2 -. - C S ( 12 )

9cos

Uy9
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for plane stress; and

K 0 ~ i2 9](13)Ux = - 2 2O 11-2v + sin 2

Uy = sin [ 2-2v - cos2 (14)

for plane strain.

Consider the vertical displacement uy along the crack surface for

which
(E) 7rI

r =t

where t is a coordinate along the crack, starting at the crack tip. One

should note to conform with usual practice, n replaces the displacement

in y direction uy. Recall from elasticity that:

-E
G = 2 (+v) (15)

Substituting into Equations 12 and 14 the crack displacement for plane

stress and plane strain can be written as

4KI (2t_
flH (16)

i t_ (17)

The equation holds only very near the crack tip

t << a

and allows one to calibrate KI by measuring crack opening at a known

distance very near the crack tip.

10



AFWAL-TR-80-4001

5. CRACK OPENING CALIBRATION

In order to find the slope with respect to the crack length an/aa

of the crack opening profile, an approximation has been used. Orange

(Reference 11) suggested a conic section approximation for a finite

width edge cracked plate. This approximation is based on assuming a

general conic section function for the crack opening shape and fitting

the crack tip radius of curvature and crack mouth opening to determine

the unknown coefficients. Further development of this relationship is

presented in Appendix E. Following Orange and substituting for the

crack tip curvature in terms of the stress intensity factor, using

crack tip displacement equations, the following expression is derived:

(I- ( ) i-(t)2 (18)

where no is the crack mouth displacement and m is the conic section

coefficient.

-= H 1 -2

L20-y (19)

Y is a nondimensional stress intensity factor

K1K = 1(20)

Crack displacements of finite single edged cracked strips under

bending or tension generated by Orange (Equation 18) were compared to the

collocation method presented by Gross (Reference 20) and found to match

within 3.2 percent. The Orange equation was compared to the Rice

(Reference 3) solution for a center crack considering an infinite plate.

The results were found to be exactly the same. The Orange equation was

also used successfully by Grandt (References 6, 21) for cracks in fastener

L .. ....... .. .... .... .... .: ... ....... ....... .... ... .. .
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holes and for radially cracked rings. Substituting the expression for

Y Equation 20, and m Equation 19 into Equation 18, we obtain

2 1 t: 2_ _

= 2 + aK2( (21)

Lo a K a

_8KI 2 -lrn 8KI 

n -- ]2 t 2  (22)

TH2 J L a 2  rH2aJ

In order to simplify the above equation,

let 8K1 2 (23)
B = -

ITH
2

and no 8KI1 (24)
R=

2 2a TH a

Thus, (25)
n = (Bt + Rt]

Also, an 1 - a +t(26)- : [Bt + RT ]  " - [Bt + Rt 2

aa 2 3a ~f~

12
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a

t
x

Figure 5. Edge Crack

From Figure 5, if t a-x, then 1.

Thus, n 1 [Bt + Rt2] [+B t +B t2+2Rt]
@--a= 2Da t+B+ -a 2t (27)

where: B _16KI 3K
Da YH2 3a (28)

and 2
DR 8KI2 2no ao 2 0 16KI DKI3a = - + 3a (29)
3a 7H2 a2  a2  3a ag 7H2 a

Equation 27 therefore defines aq/aa in terms of the crack mouth displace-
ment no and the stress intensity factor KI and their derivative with
respect to the crack length.

6. KI FOR CASE 2

Substituting Equation 27 into Equation 10 and also changing the

integration variable from x to t one obtains

Sf P [B +( + 2R) t + t ]dt (30)
1 2KI  (fa1

.. ,.. .. ..... , ..... . .... .. . .. .........
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3B DR
where B, R, -and are defined previously and calculated for Case 1.

From Equation 30 it is clear that measuring the stress intensity

factor KI and the crack mouth opening n 0 for various crack lengths and

calculating their derivatives with respect to "a" allows one to

construct the weight function for the Case 1 loading configuration. By

knowing the stress distribution at the crack location for a noncracked

body under the loading configuration of Case 2 p(t)(0 , one may obtain

K1 for Case 2.

Computing this integral is quite tedious though possible for very

simple forms of p(t). However, numerical integration is possible for

any p(t) even if represented by a discrete numerical solution. In per-

forming numerical integration, one should be cautioned to the fact that

the weight function and therefore the whole expression under the integral

is square root singular at the crack tip t=O but still it can be shown

that for the problems studied here a limit exists for the integral and,

in most cases, the numerical integration converges quite rapidly.

14
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SECTION III

EXPERIMENTAL TECHNIQUE

1. THE LASER INTERFEROMETRY METHOD

Stress intensity factor K calibrations obtained by measuring crack

tip displacements require a technique capable of accurately measuring

extremely small displacements very near the crack tip. As a rule of

thumb, the relations for the crack tip displacement field as expressed

in Equations 11 to 14 are regarded to be sufficiently accurate within a

distance of a/20 or smaller from the crack tip, where a is the crack

length. The laser interferometry technique described here was reported

in References 9, 10, and 19 to measure displacements of 0.1 microns at a

distance of 50 microns from the crack tip.

Results were reported leading to KI values that varied up to 15

percent from the theoretical value (for individual points). Most of

these deviations were attributed to the imperfect crack and material

characteristics and not to measurement errors. The technique is basically

similar to conventional interferometry but only measures in-plane

displacements on the surface.

Two small indentations are placed with a diamond indentor on both

sides of the crack near the crack tip. Those indentations are typically

square based pyramids with a base length of 20 to 40 microns and located

50 microns apart on both sides of the crack (Figure 6). A laser coherent

source impinges upon the indentations. The beam is diffracted back at an

angle a with respect to the incident beam as shown schematically in0

Figure 7.

Since the indentations are placed close together, the respective

diffraction beam overlaps resulting in interference fringe patterns on

either side of the incident laser beam. A photograph of a typcial inter-

ference pattern is shown in Figure 8.

15
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Figure 6. Surface Indentation (x280 Magnification)

M

Riht fringe pattern !

MK0

,. Laser

Left fringe pattern

Figure 7. Schematic Showing Fringe Pattern Generation

16
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Figure 8. Typical Interference Fringe Pattern

The relation between the indentation spacing and the fringe order

is set by the following equation (Reference 9):

d sin to = mX (31)

where d is the distance between indentations, X is the wave length of

the source, and m is the fringe order.

As a load is applied to the specimen, the crack opens and the dis-

tance between the indentation changes. The relation between the change
in d and the change in the fringe order Sm from a fixed point of view is

6d = 6m X/sina (32)

Now observing the fringe pattern from a fixed point allows one to count

the number of fringes passing and hence determine the change in the

fringe order. Equation 32 will then give the change in the distance d

between the indentations that correspond to the crack opening. Averaging

the left and right fringe number will eliminate free body motion.

17
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2. TEST APPARATUS

The test specimens used were flat strips of Aluminum 7075 T651.

A small V notch was placed on the edge of the specimen to allow pre-

cracking and a shallow groove was cut at the edge as to fit the clip

gage used to measure crack mouth openings. (Figure 9).

b

W

Figure 9. Test Specimen

The specimen was placed in a four-point bending fixture. Load was applied

by a standard Instron machine equipped with a compression load cell

(Figure 10).

Bending fixture

Specimen

Clip gage

Load cell

Figure 10. Specimen Set Up in Bending Fixture

18
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The crack mouth opening was measured by a clip gage placed in the

premachined groove. The clip gage consists of two small steel plates on

which strain gages were bonded (Figure 11). Precalibrating the clip gage
allows one to relate the mouth opening with the changes in strain measured.

Two pyramid-type indentations have been placed near the crack tip

by a standard Lietz microhardener tester with a diamond indentor of a

square based pyramid shape with face angles of 136 degrees. The indentations
were impinged by a Spectra Physics Model 120 5 MW HeNe laser. The laser
beam wave length X was 0.6328 microns and had a divergence angle of 0.71

mr and a beam diameter of 0.57 mm. The laser was located so that the

beam impinged perpendicular to the specimen surface. The angle of the

diffracted beam a can be calculated directly by knowing the face angle

of the indentation. (Figure 11).

Steel plates

Strain gage... . Strain gage

Spacing block

Figure 11. Clip Gage Setup
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The fringes created by the interference of the reflected beams were

picked up by two photoresistors that were located in a fixed place on the

fringe pattern.

The active face of the photo resistors was masked leaving a narrow

slit (smaller than the fringe spacing) to allow effective distinction

between individual fringes. A photograph of the test apparatus is seen

in Figure 13.

As load was applied and the fringes started moving, the photoresistor

created an electrical signal that after proper amplification could be

recorded with the aid of a strip chart recorder.

3. TEST PROCEDURE

Two Aluminum 7075 T651 specimens were each used to test 5-10 different

crack lengths. The first specimen was used for longer cracks and the

second for shorter cracks with some overlapping between the regions that

allowed comparing between the two. The specimens were precracked in

the long transverse (LT) direction of the material in three-point bending

on a Schenck fatigue machine jsinq cyclic loads at a frequency of 20 Hz.

The precracking stress intensity factor varied from 6000-9000 psi 7i-n.

The higher KI was used to initiate and propagate the crack to about 80

percent of the desired length, and the lower KI levels were applied to

get the final sharp crack.

Two indentations were placed on the surface 50-200 microns behind

the crack tip as explained previously. A load of 200 grams on the

indentor diamond head was found most suitable to create good reflecting

indentations with a base square dimension of approximately 30 microns.

The specimen was mounted on the loading fixture, and the two photo-

resistor output signals together with the clip gage and load cell signals

were monitored by a four-channel strip chart recorder to create a common

time basis.

The specimens were loaded typically to values of KI = 12-14 ksi v

so the amount of plasticity in the specimen was kept small (Appendix B).

Two load cycles were applied prior to actual testing so that the crack would

appear to its full length on the surface and would easily be seen under a

microscope.
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0'=44

Figure 12. Laser Beam Reflection

Photo-
resistors

Load
Fixture

cell

Figure 13. Test Apparatus Setup
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During the preload cycle the photoresistors were relocated to a

position such that the maximum fringe intensity could be observed. Since

the photoresistors were fixed in position while the specimen with the

indentation was displacing due to the applied load, it became necessary

to establish the final location of the resistors under a mean load so

that the indentations could still stay within the beam boundaries over the

extreme deflection.

Three load cycles were applied to each specimen for each crack

length. After each test the crack length was measured in order to account

for any crack propagation during the test cycle. Then the crack was

propagated to the next stage in the Schenck fatigue machine. In addition,

for two different crack lengths the crack surface displacement was

measured along the crack at 2-6 different locations using previously

applied indentations in order to verify the Orange (Reference 11) conic

section approximation for the crack opening.

22



AFWAL-TR-80-4001

SECTION IV

DATA REDUCTION AND NUMERICAL TECHNIQUE

1. KI FOR CASE I

The fringe patterns, crack mouth opening, and loads were all recorded

on a four-channel strip chart recorder. A typical chart for a single

loading cycle is shown in Appendix C, Figure C-l.

As explained previously, two sets of fringes were created by the

reflected beam from the indentation. For each set of fringes, a slope

of number of fringes per unit load 6m/p can be obtained. These slopes were

averaged to eliminate free body motion. A more detailed description of

the laser interferometer data reduction procedure can be found in

Appendix C.

Using Equation 32

n 1 6d =1 = 1 6m (33
p 2 P =P 2 P sin e (33)

where X/sin a is the calibration factor of the interferometer used here.
Equation 33 allows one to compute the displacement per unit load. The

loading and unloading results of three loading cycles were averaged to

give an average displacement per unit load. The distance t of the

indentation behind the crack tip was computed by averaging the initial

distance before the test with the one measured after three test cycles.

Since only three cycles were applied and the amount of crack propagation

was very small (a few microns), linear interpolation was adequate to give

a sufficiently accurate estimate.

KI for Case 1 can now be determined from the crack displacement near

the crack tip (Equations 12 or 14). In most cases 0 is close enough to

1800 so the simplified form of Equation 17 can be used.

Since the measurements are on the surface, the stress field should

be considered as plane stress and H should be given the value of E

(1xlO 7 for aluminum 7075T651). Now Equation 17 takes the form
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KI (34)

This data will usually be converted to some nondimensional form.

2. CRACK MOUTH OPENING

The crack mouth opening no was recorded directly from the clip gage

readings. The crack mouth opening per unit load was then readily obtained

from a no versus P plot using only the linear part of the curve and

neglecting the initial nonlinear part which is associated with crack

closure effects.

3. NUMERICAL TECHNIQUE FOR KI CASE 2 COMPUTATION

The rest of the computation, which involved calculating stress

intensity factors for different Case 2 loadings were programmed and

handled numerically. The KI 0  data was fitted by a suitable interpolationI(D aKI @ )

curve. Interpolated values of KI(D and a were computed for any

desired crack length a/w. In a similar way, the crack mouth opening

data for Case 1 n was fitted by an interpolating curve that allows
0r 0

one to compute values of no and a for the desired points. These inter-

polations are calculated in a different subroutine so any desired inter-

polation function can be tried without changing the main program. A

comparison table for KI and n0 for interpolated data versus actual data

is printed out so one can judge the accuracy of the interpolation process

chosen. Fourth order least square polynomials will give reasonable

results in many cases.

Using Orange (Reference 11) conic equation discussed in Appendix E

for the crack opening profile, the derivative of the crack opening along

the crack with respect to the crack length can be computed through

Equation 27.

Since different factors are used to nondimensionalize the KI and T,KI1 0
data, care should be taken to bring all the K1, a , 0 and

0 to a common basis. Using Equation 9. the weight function is
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computed for each crack length at any point along the crack. The constant

H is determined depending on plane stress or plane strain conditions

(Appendix B). The stress distribution along the crack location for a

noncracked body p(t) is supplied by a separate subroutine and can be

easily fitted with available data or some known analytical solution. KI
for Case 2 now is computed through integrating Equation 30.

The integral is performed numerically using a Romberg integration

scheme (Reference 24). Although the weight function and thus the

integrand in Equation 30 is singular at the crack tip, the integral will

still converge to a distinct value quite rapidly for most p(t) functions.
Because of the crack tip singularity, the lower limit of this integral
cannot be set to zero. A value close to zero should be taken and this

value can be made smaller and smaller by an iterative process until the

value of the integral converges within a specified accuracy.

Since the numerical integration process may be executed many times

until convergence is obtained, an efficient algorithm should be used to

reduce the required computer time. Romberg integration scheme used here

is a powerful and efficient numerical integration technique. It is

based upon the trapezoidal rule combined with Richardson extrapolation.

More details of this scheme can be found in Hornbeck (Reference 24).

Using this scheme reduced the computer time by a factor of about 200

compared to the Simpson's rule integration scheme. A detailed description

of the computer program is presented in Appendix D.
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SECTION V

EXPERIMENTAL RESULTS

1. EXPERIMENTAL MEASUREMENTS

Two Aluminum 7075 T651 edge cracked strips were used in the experi-

ments. The specimens were cut out from a rolled plate and the crack was

grown in the long transverse (LT) direction of the material.

The dimensions of the specimens and the region of crack length in

which they were tested are shown in Figure 14.

TW
i N br

2z b w N* Q F a

Specimen A 9" 0.24" i" .27" 0.04" 0.05" 0.2328" -0.7517"

Specimen B 9" 0.245" 0.7885" .31" 0.036" 0.036" 0.08153"-0.3753"

*N dimension determined for clip gage purposes

Figure 14. Specimen Dimensions
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Specimen A was tested with ten different crack lengths with crack

length to width ratios ranging from .2328-.7517. Specimen B was tested

with five different crack lengths where a/w ranged from .1034-.476.

Both specimens were loaded in a four-point bending fixture as shown

in Figure 15.

611
P/ 2 P/2

Figure 15. Loading Fixture Dimension

Each specimen was loaded through three loading cycles, and near crack tip

displacement (by laser interferometry) and crack mouth openings were

recorded. Table 1 represents the average results for all crack lengths

measured.

2. DATA INTERPOLATION

The stress intensity data calculated from the interferometry

measurements was converted to a nondimensional form of

K, K IbW2  (35)

oI'la 6AT

-P.1"

where M is the bending 
moment M 2

2

The crack mouth opening data was converted to a nondimensional form

__o  n0 bW2H
2oa " H = 12Ma (36)
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TABLE 1

EXPERIMENTAL MEASUREMENT RESULTS

Distance of
indentation Crack mouth

Nondirensional fron crack No of fringes displacement
Specimen crack length tip per unit load per unit load

a/w r 6m/p no/p

Microns i/b x 10 .-3  in/£b xlO 6

B .1034 101 5.093 0.568

B .1586 83.5 6.623 0.7453

B .2064 88 7.6713 0.9836

A .2328 121.5 7.3128 0.856

B .2646 86.5 9.116 1.268

A .2666 99.5 7.580 1.14

A .3094 143 10.180 1.405

A .346 56 7.340 1.705

A .3978 72 9.140 2.358

A .436 46.5 8.0146 2.727

B .476 47 12.808 4.121

A .4893 50 10.130 3.6585

A .5780 111.5 18.354 6.04

A .6467 74 20.460 9.216

A .7517 70 35.500 20.681
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The nondimensional data for KI and r0 was interpolated by a least square

fourth order polynomial. Table 2 and Table 3 present the actual experi-

mental and the interpolated data for K, (nondimensional) and no
(nondimensional) respectively including the relative difference in percent

of the interpolating polynomial at the test point.

Figure 16 presents the actual experimental nondimensional KI com-

pared to the known reference results from Tada (Reference 12). Figure 17

presents the actual experimental nondimensional data for jo compared to

the known reference results from (Reference 12). The average difference

between the reference values of KI and the experimental data is 6,% while

the maximum difference for a single measurement is up to 14%. These

results are similar in accuracy to the ones obtained by Macha (Reference

10) for the laser interferometry technique. The values of KI from the

interpolating polynomial that were actually used to compute the weight

function are similar in accuracy with a maximum difference of 13% and an

average difference of 6% compared to Reference 12. One should note

that the relatively large difference in the slope of a a for some of

the short crack lengths (Figure 16) will have only a minor influence on

the weight function computation as can be seen from examining Equation 30.

no data as well as the interpolating polynomial fits the Reference 12

values much better as seen in Figure 17.

3. CRACK PROFILE MEASUREMENTS

For two different crack lengths on specimen A the crack opening was

measured along the crack at several points in addition to the point near

the crack tip and at the crack mouth. These measurements were done by the

laser interferometry technique. The existing indentations left behind

as the crack propagated were used for these measurements. The crack

openings along the crack were compared to the Orange (Reference 11) conic

sections and found to match this approximation excellently (Figures 18

and 19).
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TABLE 2

K, (NONDIMENSIONAL) COMPARISON OF ACTUAL DATA TO

INTERPOLATE DATA

Crack Length Actual K Interpolated KI Relative
Difference

K bW 2  K bW2 in %

a/W I I *
cFM/ a oS M/- T a

.1034 .9073 .9467 4.34

.1586 1.0575 .9776 -7.56

.2064 1.0572 1.0545 -.26

.2328 1.1137 1.1060 -.69

.2646 1.1007 1.1705 6.35

.2666 1.1862 1.1746 -.98

.3096 1.2366 1.2590 1.81

.3460 1.3490 1.3244 -1.82

.3978 1.3804 1.4086 2.04

.4360 1.4388 1.4696 2.14

.4760 1.5646 1.5424 -1.42

.4893 1.6551 1.5710 -5.08

.5780 1.8481 1.8774 1.59

.6467 2.3460 2.3688 .97

.7517 3.9513 3.9413 -. 25

*The interpolating polynomial is:

= 70.75(a/W) -92.45(a/W) +42.95(a/W) 2-6.53(a/W)+1.257
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TABLE 3

no (NONDIMENSIONAL) COMPARISON OF ACTUAL DATA TO

INTERPOLATED DATA

Crack Length Actual no Interpolated no  Relative
Difference

in %
a/ o0bW 2H 0bW2 H .
a/W12Ma 12Ma

.1034 1.9440 1.9500 .31

.1586 1.6643 1.6491 -.91

.2064 1.6855 1.6334 -3.09

.2328 1.6163 1.6879 4.43

.2646 1.6950 1.7933 5.80

.2666 1.8796 1.8011 -4.18

.3096 1.9961 1.9923 -.19

.3460 2.1660 2.1823 .75

.3978 2.6055 2.4945 -4.26

.4360 2.7493 2.7696 .74

.4760 3.0632 3.1251 2.02

.4893 3.2866 3.2648 -.66

.5780 4.5933 4.6431 1.08

.6467 6.6244 6.5725 -.78

.7517 12.0980 12.1082 .08

*The interpolating polynomial is:

nobWHl2MaH= 210.38(a/W)4-282.57(a/W)3 +150.74(a/W) 2-32.16(a/W)+12Ma

+3.952
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4 KbW
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Tada (Reference 12)

----Interpolation curve I
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3 dataI

& Experimental data,
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A Experimental data, /
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18 0bW2H

12Ma

16 - Tada (Reference 12)

Interpolation curve
14 for the experimental

data

6 Experimental data,
12 Specimen A

A Experimental data,
Specimen B

-10

8I

6I

a/g

.1 .2 .3 .4 .5 .6 .7

Figure 17. Crack Mouth Opening (Nondimensional) for Pure Bending
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4. CASE 2 LOADINGS

Three different loading configurations were chosen for Case 2,

uniform tension, three-point bending with S/W of 4 and 8 (Figure 20).

Each of the different Case 2 loading configurations requires another

function p(t) as the noncracked body stress at the crack location stresses.

0 UNIFORM TENSION 0

THREE-POINT BENDING

I , l

Figure 20. Case 2 Loading Configurations

5. UNIFORM TENSION

In this case,

p(t) = const. = a (37)

where a is the remote stress. Since the standard nondimensional0
representation for KI for uniform tension is

K

7-acy (38)

the function p(t) should be factored by l/A0a-o  to get KI in the

desired form. Therefore, take

p(t) 1
M(39)

(in the computer program l//iii is already factored in the weight function

so p(t) is substituted as 1.).
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The results of the nondimensional stress intensity factor for

uniform tension at equally spaced points from a/W=.l to a/w=.7 are

presented in Table 4. These results are compared to Tada's (Reference 12)

solution. The results agree with the reference solution within 8 percent.

Figure 21 compares the reference solution (Reference 12) to the values

calculated at the same a/W points where experiments were performed on

the four-point bending specimen. One can see that the last point is the

only calculated value that does not agree favorably with the reference

data. Since the computations required differentation of experimental

data, one should be very suspicious about the results obtained at the

experimental interval end points. Close to the end points computing

derivatives actually requires extrapolations that can be very inaccurate,

since the behavior of the function is unknown in these regions.

irvestigating Equation 30 shows clearly that the derivatives aK/Da

and an0 /3a have a relatively larger influence on the value of the weight

function at longer crack lengths; therefore, the computed values are

more likely to get distorted at the upper limit of the experimental a/W

interval as can indeed be seen in Figure 21.

6. THREE-POINT BENDING

A solution for the stress distribution of a noncracked strip under

three-point bending in a cross-section through the center is given by

Timoshenko (Reference 27):

a = 3_ ( _ Y + 2 c- - (40)
x 2c3b 2 10 C
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TABLE 4

K, (NONDIMENSIONAL) FOR UNIFORM TENSION

K1Calculated -,From

Crack Length a/ia /ra Relative
Using the Difference

a/W Weight Function Ref 12 in %

.1000 1.2705 1.1957 6.26

.1500 1.2697 1.2682 .12

.2000 1.4041 1.3667 2.74

.2500 1.5540 1.4941 4.01

.3000 1.6855 1.6551 1.83

.3500 1.8170 1.8565 -2.13

.4000 1.9967 2.1080 -5.28

.4500 2.2917 2.4241 -5.46

.5000 2.7719 2.8266 -1.93

.5500 3.4752 3.3486 3.78

.6000 4.3636 4.0432 7.92

.6500 5.3158 4.9993 6.33

.7000 5.1832 6.3755 -3.02
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16

15 K1

14 a0v7r

13 a0a0

12 W f 9

11 a~.

-10

9

8

-TADA (REFERENCE 12)

SEXPERIMENTAL RESULTS USING
6 THE WEIGHT FUNCTION

5

4

3

2

1
a/W

.1.2 .3 .4 .5 .6 .7 .8

Figure 21. Stress Intensity Factor (Nondimensional) for Uniform Tension
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The terms of this equation are defined in the following Figure 22.

3 is the stress in x-direction along AD.

p

AX 
c=

P/2 P.PI2

Figure 22. A Uniform Strip Under Three-Point Bending

According to Timoshenko, this expression gives the stress with very good
P

accuracy except for point D where an error of .121 2 exists based on a

more accurate solution. This term will lead in our worst case to an

error of 4 percent in the load distribution at the crack mouth location,

but since, at this point the weight function has its lowest value, the

integral of the product of h and p(t) is expected to have much better

accuracy. The standard nondimensional solution is of the form

(40a)

where

C = 6M and M P k
4bc2  2

So the undimensional form of KI becomes

K 4c2 b (41)

) 3PZ
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The factor I/Aia is already included in our computer program in the

Weilht function so the form of p(t) that is required in order to get KI
in the form of Equation 41 is

a (t)4bc
2

p(t) = x 3P£ (42)

Substituting Equation 40 to Equation 42 yields r

p (y) 2 + -i 1 ~ 2 (2)y) (43)

where S = 29,

and W = 2c

Changing to crack tip coordinates t the expression for y/c becomes

1/c (t+ a) = (2 a+ (44)
(W/2) - W W 1

Substitute Equation 44 into Equation 43 and get

p~~t) [W2 S2 [~ W/ J3 T\ W WI

(45)

Results for the nondimensional stress intensity factor considering

three-point bending (S/W=4 and S/W=8) are presented in Tables 5 and 6

respectively. These results are compared with known results from

References 12 and 28. The reference solution claims to be accurate for

a/W <.6 and in this interval the calculated experimental values are

within 6.15 percent accuracy for S/W=4 and 5.9 percent for S/W=8.

Figures 23 and 24 show the calculated KI for three-point bending for

the a/W points where actual data was gathered for the four-point bending.

As for the uniform tension case, the last point is the only one not fitting

the expected curve because of the inaccurate extrapolation procedure

explained previously.
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TABLE 5

K, (NONDIMENSIONAL) FOR THREE-POINT BENDING, S/W=4

KC (NonbK i(sonal) Relative
Crack Length lclate Using K (NondL nsicnal) Difference

a/W the Weight Function Ref 28 in %

.1000 1.0134 .9849 2.89

.1500 .9447 .9731 -2.91

.2000 .9838 .9803 .36

.2500 1.0272 1.0037 2.34

.3000 1.0491 1.0425 .64

.3500 1.0635 1.0979 -3.13

.4000 1.1015 1.1736 -6.15

.4500 1.1994 1.2754 -5.96

.5000 1.3866 1.4112 -1.74 V

.5500 1.6656 1.5910 4.69
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TABLE 6

KI (NONDIMENSIONAL) FOR THREE-POINT BENDING, S/W=8

KI (Nondimensional) K (Nondimensional) Relative
Crack Length ICalculated Using Difference

a/W the Weight Function Ref 28 in %

.1000 1.0630 1.0156 4.66

.1500 .9911 1.0080 -1.68

.2000 1.0314 1.0183 1.28

.2500 1.0755 1.0438 3.04

.3000 1.0964 1.0839 1.15

.3500 1.1087 1.1403 -2.77

.4000 1.1450 1.2167 -5.89

.4500 1.2431 1.3189 -5.75

.5000 1.4328 1.4549 -1.52

.5500 1.7160 1.6349 4.96
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4.0

K

_3.5
WaTiT

3.0
P/2 sP/2

-2.5 6M
W- BROWN (REFERENCE 28)
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EXPERIMENTAL RESULTS
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1.5

1.0 A A

-0.5
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Figure 23. Stress Intensity Factor (Nondimensional) for Three-Point
Bending S/W=4
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Figure 24. Stress Intensity Factor (Nondimensional) for Three-Point
Bending, S/W=8
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SECTION VI

CONCLUSIONS

1. This work shows clearly that the experimental weight function

procedure leads to excellent results for the stress intensity factor

without actually testing the loading configuration in question.

2. A set of experiments of a single loading configuration can be

used to calculate the stress intensity factor solution for any other

loading configuration applied to the same geometry. The only additional

information required is the stress distribution at the crack location

for a noncracked body.

3. One should limit the results obtained for a different loading

only to the same a/W region studied in the original experiment. Extra-

polations, or even calculations, near the test a/W limits may lead to

inaccurate results.

4. Because data scatter can lead to errors when differentiated, care

should be taken to collect enough data to yield reasonable interpolating

functions.

5. Even though some error was introduced in the KI and ?I measure-

ments, the numerical procedure using the derivatives of KI and n did not

distort the Case 2 results beyond the basic accuracy of the Case I measure-

ments.

6. The laser interferometric technique provides an efficient procedure

for crack opening measurements and leads to accurate results for this type

of measurement.

7. The Orange (Reference 11) conic section again provided an accurate

representation for the crack opening profile for edge cracked strips. This

conic section should, however, be compared with actual profile measurements

(as done here) prior to applying it to other geometries.

8. The fact that the actual cracks were not perfectly straight on a

micro-scale, as assumed in this theory, is the most likely source for KI

calibration errors for Case 1 loading (four-point bending). Perhaps other

materials would give "straighter" cracks which more closely match the

analytical behavior.
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APPENDIX A

THE WEIGHT FUNCTION

The idea of the weight function has been introduced by Bueckner

(Reference 2) and was also discussed in References 2 through 8.

The following analysis shows that if the complete solution of the

stress intensity factor and the crack opening displacement for a crack

subjected to a certain loading system is known, then the stress intensity

factor solution for the geometry under another loading configuration may

be obtained directly from the known solution.

Let us consider a cracked body with loads Pl .... P as described

in Figure A-l.

a

P.

Pn

Figure A-1. Loaded Cracked Body
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The elastic energy release rate, often referred to as the Griffith energy

rate, can be defined following Irwin (Reference 22) as

•- I (A-l)

where U is the total potential energy stored in the cracked body and a is

the crack length.

g has units of force and is often referred to as the crack

extension force

1 N Nu:! y c..p.p.
i=1 j=l 13 1 ) (A-2)

where C is the compliance coefficient defined as the deflection at point

i due to a unit force at point j.

N jN C.. N U.2 : I p - p.
2 j=1 Da i .- 1

(A-3)

where
N N (A-4)

u. j~~l i= j=1 Ci(-4

uiJ is the displacement at i due to load P.

Since the elastic energy release rate 9 (based on strain energy

consideration) and the stress intensity factor K (based on crack tip

stress considerations) are both parameters that characterize crack growth,

a relation can be established between them as shown by Hertzberg

(Reference 15).

K 2  (A-5)
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where H is defined as 4

E for plane stress
H ( A-6)

E for plane strain

Since K is the linear elastic stress intensity factor, superposition

can be used to write

N N
K K. k (a) P

i 1 (A-7)

k. stress intensity factor per unit load. Substituting, into the elastic
1

energy release rate

H L ki (a) k (a)PiPj
i=l j~l (A-8)

By equating Equation A-8 to Equation A-3 we conclude that they should be

equal term by term.

Thus,

ki (a) k (a) = (a)

H 2 3a (A-9)

If the full solution for K is known only for one load, say Pm' then

H aCim (a) 1 (A-10)ki(a) a2 km(a)
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K
recall, that we defined in Equation A-7 km = -

m

mui
and in Equation A-4 C im - Pm

Therefore,

k.(a) H__ 1
i 2 3a K (A-11)

and since
N

K = [ k (a) P (A-12)
i=1l

Then N mN 3u
2K- i2 a (A-13)K=2m i=1l

For an arbitrary distribution of Pi. and a set of surface tractions T(s),

the expression for K can be written as

K H M (s,m) T(s)ds
K 2Km  i (A-14)

If one defines the weight function is

H U m(s,a)
hm (sa) = 2K (a) 3a (A-15)

Then we can readily see that the weight function depends only on the

geometry of the cracked body (Including the crack length) and the

loading configuration denoted by the superscript m.
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Substituting the term for the weight function into Equation A-14,

we get

K =f hm(s,a)T(s)dS (A-16)

We can therefore conclude that the stress intensity factor for the

arbitrary surface traction T(s) can be obtained from the known weight

function we computed considering the loading configuration m. In a

little bit more general derivation, the body forces can be included and

one can write

K =fThdr + f f' h'dA
Jr JA(A-17)

where h is the weight function obtained from any known load configuration,

T are the surface traction for which K is to be determined,

f are the body forces for which K is to be determined,

I' is a chosen path around our specimen as to include all the
surface tractions T, and

A is the region where the body forces act.
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APPENDIX B

JUSTIFICATION OF ASSUMPTIONS

1. USE OF LINEAR ELASTIC FRACTURE MECHANICS

Linear elastic fracture mechanics (LEFM) requires that the amount

of plasticity near the crack tip will be relatively small. As a "rule

of thumb" LEFM can be considered to be valid if

rp <O.la

where rp is the radius of the plastic zone around the crack tip and a is

the crack length. Using Irwin's circular model for the plastic zone

incorporating the upper bound dimension as obtained by a plane stress

solution (Figure B-l),

a effective -

Figure B-i. Irwin Circular Plastic Zone Model

1p (B-i)
r

where ay s is the yield strength of the material.

Using 7075 T651

y's = 80.8 ksi
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The maximum KI used in our tests was lower than 15 ksi/in. Therefore,

the maximum radius of plastic zone that has been developed was

2

r = 0.0055 in
p 21T \8)

The smallest crack length used was

a = 0.0815"

Thus,

(ra) = 0.0674 < 0.1a max

The conclusion is that LEFM was valid even in the most extreme conditions.

In most cases the crack length was significantly longer and therefore

r p/a smaller.

2. PLANE STRESS/STRAIN CONSIDERATIONS

As a rule of thumb (References 15, 16), if

2

b > 2.5 (B-2)

where b is the material thickness, KIC the fracture toughness, and ay-s
the yield strength.

The specimen can be considered thick enough to be under a plane

strain stress field.

IC for 7075 T651 plate is 21.4 ksiVTin.

KKI

2.5 ( ) 2  0.176

Since .24"- .25" thick specimens were used, they can be viewed to

be under plane strain conditions.
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APPENDIX C

LASER INTERFEROMETER DATA REDUCTION

A typical strip chart recorder trace of fringe motion crack mouth

opening and load is shown in Figure C-1. From this chart the fringe

order versus load data can be obtained for the left and right fringe

pattern as presented in Table C-i. The data can be plotted as shown

in Figure C-2.

From Figure C-2 slopes of 6m/P of the left and right fringe pattern

can be obtained by considering only the linear part and ignoring the 4
initial nonlinear part of the plot that is associated with fatigue crack

closure effects. Those slopes are averaged to eliminate free body

motion.

The experiment is repeated and results are averaged. The value of

the slope is used in Equation 33 to get displacement per unit load data.

Through Equation 34 stress intensity factors can be calculated.
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FULL LOAD SCALE 1000 LB (100 LB/IN) LA

FULL CRACK MOUTH OPENING (2 q 0 )

SCALE 10x]GO IN. (0- IN/IN)

FRINGE NO.

Figure C-1. Typical Stripchart Recorder Trace of Fringe Motion, [oad

and Crack Mouth Opening
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TABLE C-1

FRINGE ORDER VERSUS LOAD

Fringe No. Load Left Pattern Load Right Pattern

0 120 lb. 60 lb.

1 190 lb. 150 lb.

2 237 lb. 190 lb.

3 278 lb. 235 lb.

4 320 lb. 275 lb.

5 365 lb. 320 lb.

6 410 lb. 360 lb.

"7 450 lb. 400 lb.

8 490 lb. 445 lb.

9 485 lb.
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APPENDIX D

COMPUTER PROGRAM DESCRIPTION

The computer program has been written to perform the numerical

computation involved in the process of data interpolation, weight function

calculations and finally evaluation of the integral in Equation 30 to

determine K1 for Case 2.

In order to allow maximum flexibility in the usage of the program,

it was constructed of a main program that performs the integration and

nine subprograms that perform all the other necessary calculations. In

addition, two library subprograms are used, one from the IMSL library

and the other from the CC 6600 library. This structure of the program

allows using it for different cases and configurations and permits the

user to enter his own interpolation schemes, comparison functions and

the noncracked body stress distribution p(t) that makes it possible to

compute any desired Case 2 stress intensity factor.

The program is written in FORTRAN and was executed on the CDC system

at Wright-Patterson Air Force Base. Execution time for the three-point

bending and uniform tension Case 2 stress intensity factor varied from

two to four seconds.

1. THE MAIN PROGRAM

The main program reads in the input data, calls in the different

subroutines to perform necessary computation and performs the numeric

integration by using the IMSL library subprogram DCADRE. An iterative

scheme "pushes" down the lower integration limit until the desired accuracy

for the end result is met. At the end, it prints out computed KI for

Case 2 compared to user-supplied comparison data.

2. FUNCTION SUBPROGRAM F(x)

This function computes the value of the integrant (the weight

function multiplied by P(t)) at each distance t from the crack tip.
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3. FUNCTION SUBPROGRAM P(x)

This function computes the value of the stress at the crack location

P(t) for a noncracked body at any distance t from the corresponding crack

tip.

The function should be supplied by the user and is the only subprogram

that has to be altered when computing KI for different Case 2 configurations.

Care should be taken as related to the form in which P(t) is supplied.

This form will determine the form of the calculated KI. A factor of

I/A is already included in the weight function calculation. So if

P(t) is supplied directly in terms of stress, the resulting KI values will 4
be in the dimensional form of KI/ .

4. LIBRARY FUNCTION PLSCF

A CC 6600 Library subroutine, this function computes least square

polynomial fits for a given set of data. Polynomials up to 6 degrees or

Chebyshev polynomials of any degree can be specified by the user. For

further information see Reference 25.

5. LIBRARY FUNCTION SUBPROGRAM DCADRE

An International Mathematics and Statistics IMSL Library subprogram,

this subprogram performs numeric integration of a function using the

Romberg extrapolation scheme. The function DCADRE is capable of integrating

functions with "jump" discontinuities and certain types of singularity.

This feature is most important in our case because of the crack tip singu-

larity of the weight function. Even if the desired accuracy is not

found, DCADRE returns the best available estimate. See the IMSL Manual

(Reference 26) for further information.

6. SUBROUTINE KPOL

This subroutine computes a fourth order least square polynomial fit

for the nondimensional KI data using PLSCF subroutine from the CC 6600

library. It prints out the polynomial coefficients C(5)... ,C(l) and

returns these values to the main program. It also prints out the error

flag IER from PLSCF.
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7. SUBROUTINE EPOL

This subroutine computes a fourth order least square polynomial fit

for the nondimensional no data using PLSCF subroutine from the CC 6600

library. It prints out the polynomial coefficients D(5),... ,D(l) and

returns them to the main program. It also prints out the error flag

IER from PLSCF.

8. SUBROUTINE EVEK

Evaluates the nondimensional KI from the fourth order least square

polynomial and the derivative of KI with respect to crack length Ki/3a

at the points where KI for Case 2 should be evaluated. One should realize

that the differentiation considers the fact that the nondimensional KI
usually factors out l/ava- that should be included in the differentiated

term. The derivative KI/Da requires the expression

where Y is the nondimensional K I value and a is the maximum tensile

stress in the specimen. KI and KI/Da are returned to the main program

in a dimensional form factored only by i/a as to match the no data.

9. SUBROUTINE EVETTA

Evaluates the nondimensional no from the least square fourth order

polynomial and the derivative of n0 with respect to crack length h0 /Da,

at the points where KI for Case 2 should be evaluated. One should realize

that the differentiation considers the fact that the nondimensional n0

is factored by a term of "a" that should be included in the differentiated

term as applied in the above paragraph.

no and rn0/aa are returned in a dimensional form factored by l/u

to match the K data.
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10. SUBROUTINE COPK

Compares the nondimensional KI input data with the interpolated data

by KPOL at the test points. A comparison table that includes a relative

error in percents is printed out for the user's evaluation and judgement.

11. SUBROUTINE COPETA

Compares the nondimensional no input data with interpolated data

by EPOL at the test points. A comparison table that includes a relative

error in percents is printed out for the user's evaluation and judgement.

12. SUBROUTINE KANA

Evaluates KI for the Case 2 loading configuration from a user-

supplied comparison function. The evaluation is done at the same points

where KI Case 2 is evaluated from the experimental data. This subroutine

can be eliminated if the above comparison data is available explicitly.

In this case, the comparison values should be assigned directly to AK

array. If no comparison values are available, the final printout table

should be altered to avoid undefined terms.

13. LIST OF SYMBOLS USED IN THE PROGRAM (ALPHABETICAL ORDER)

A Constant used in subroutine KANA

AERR Input, absolute error in the integral routine DCADRE

AK(99) K1 (2/ a/a comparison value of the KI Case 2

nondimensional evaluated from the user-supplied
comparison function at points defined by S

AKS(99) K1 (al calculated values of KI Case 2

(nondimensional) at points defined by S

B Interim term for weight function calculations

C(5) Interpolating polynomial coefficients for KI data

D(5) Interpolating polynomial coefficients for n0 data

DB Interim term for weight function calculation

DC aR/3a interim term for weight function calculation
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DY(99) Interim derivative term for DYA

DYA(99) 1/a (Kiaa) derivative w-r-t the crack length of KI

Case 1 at points defined by S

D2(99) Interim derivative term for DZA

DZA(99) I/a (qo/ a) derivative w-r-t the crack length of no

at points defined by S

EDS Input, desired absolute accuracy in KI computation

ES(99) (AKS-AK) 100/AK relative error in the computed KI

EST Current estimate of value of the integral by DCADRE

EY(99) (YC-Y) 100/Y relative error in percents of interpolated
K1 data at points defined by S

EZ(99) (ZC-Z) 100/Z relative error in percents of interpolated
n data at points defined by S

F h, the weight function (subfunction)

G Upper limit of the integral

H Input, H material property

IER Error flag for library subprograms PLSCF and DCADRE

M Input, number of experimental data points

N Input, number of points where KI should be evaluated for
Case 2

P Stress distribution for the noncracked body at the crack
location for Case 2 loading configuration (subfunction)

PI T

Q Lower limit of integral

R Interim term for weight function calculation

RELERR Input, relative error in the integration routine DCADRE

S(99) Input, a/w, nondimensional crack length at point where
experiments were performed

T Interim term for weight function calculations

V Previous interim value for EST
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VA (EST-V), difference between last and current integration
estimate

W(99) Weight corresponding to each data point used in PLSCF
(currently defined as -1 to give equal weight to each
point)

WORK(25) Work array for PLSCF subroutine

X(99) Input, a/w, nondimenslonal crack length for points
where K I Case 2 should be evaluated

Y(99) Input, K I av/iah, nondimenslonal K1, experimental data

YA(99) KI/a, interpolated K1 for Case 1 at points defined by x4

YC(99) K I avna-, interpolated nondimensional K I for Case 1 at

points defined by S

YK(99) K! ava~, interpolated nondimensional K1 for Case I at

points defined by x

Z(99) Input, q *H/(2aa), nondimensional crack mouth opening

ZA(99) n)0/a, interpolated q~ at the points defined by x

ZC(99) rjo H/(2aa), interpolated nondimensional no0 at points

defined by S

ZK(99) n~ H/(2aa), interpolated nondimensional n 0 at points

defined by x

14. SEQUENCE OF INPUT DATA

No. of
Card Variable Variables Real/ Formt

Numtber per card Integer

1 H 1 Real Unforrmatted

2 AERR,RELERR,EPS 3 Real Unformnatted

3 M 1 Integer Unfoirmatted

3 to (m+3) s(I) ,YI) ,ZI) 3 Real Unfonrtted

M+4 N 1 Integer Unfornkatted

(M+5) to jM+N+5) X(I 1 Real Unformtted
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15. SEQUENCE OF OUTPUT DATA

1. Interpolation polynomial coefficients for KI

2. Interpolation polynomial coefficients for no

3. Comparison table of actual to interpolated KI

4. Comparison table of actual to interpolated no

5. The following printout will appear only if singularities have

been met by subroutine DCADRE. Each time a singularity was met, a warning

statement is printed out followed by the values of the crack length

(X()), the distance from crack tip (Q), and the value of the error flag

(IER) for which the singularity occurred. Values of IER equal to 65 or

66 indicate that the singularity was successfully handled. If any other

value appears consult the IMSL Manual (Reference 26).

6. Comparison table of KI for Case 2 calculated values and supplied

comparison values.

16. LISTING AND RESULT SAMPLE

The following pages include a complete listing of the program and a

sample printout of results for uniform tension as Case 2 loading config-

uration.
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DNOGRAM TNS 74l/4 OP1.1 FIN .,*4?R R9/?R/?9 SA.S7.it PAGE

t PROGRAM TH S CINPUTIA0.OUIPUI)
C
C ........................... ECEMBR 1979 ...................
C DA1A REDUCTIOM FoR INSIS -DAN RAX-TIVA

S C (SEE THSIS APPEMIII (AEITICAEIAAV79O-Z I FOR DETA1LED DESCRIPTION)

C
DIMENSION AIYi9),'(9(,SIVR(991,EA(99I.YC(9RI.DYANN),D¥(

*N9),AY(AqIZK(N9) p79(905 ,?CXNN)I ,A(991 .O2(991 AK(991 pAKSEISI sS(9
IS *9) .CIR(.O5)NORV(2RB.W(99(,E[493(

COmMOwDoAN/G.T.,f,R. YbnC
EXTERNAL F
P1.4.eATANIZ.A)

C FIRST CARD
is C READ I h

READ' .1
C SE(CONO CARD
C READ IN THE FOLLOING TERMS ON THIN SAE CARDIUNFORMATTEO)
C AERR-ARSOLUT ERROR IN THE INTEGR %L ROUEI NETCA DRE)

to C RELLR -RELAIIVE ERROR IN THE INTEGRAfION ROUTINEIOCA ORE
C EPS-nOLSIRE AqSOLUTE ACCURACY IN ANSWER

READ' AIER.RELERRLPS
C NEXT C -NUMBER 3r EA;rRIMEHTAL )AT4 POINTS

RAO!,MO
29 C THE NEXT M CAROS COrXTA!NE THE EXPERIMENTAL DATA THREE VALUES ON EACH

C CARO-A/W.KIO OIENSIONAL§.ETAIN)N DIMENSIONAL)- IUNFORHATTED)
LID 2 I'1.M

2 READ' ,S(I)h(I) .7(1)

C NEXT CARD-N-NUIBEN OF POINTS WHER! R SHOULD SE EVALUATED FOR CASE 2
31 REAO% N

C NEXT N CAROS-VALUES O A/W At WHI:N K SHOULD KE EVALUATED (ONE VALUE PER
C CARD-UNFORMATTE()

DO 1? 1-1.N
IF READ'.X(Il

39 PRINT I
I FOMAIEHI.IHAX.-PFSULT)"J

PRINT * .- -
PRINT. -
:RINI*41 PR INT*, -

PR IN
C COMPUTE A LEAST SQUARE FORTH ORDER POYNORIAL FOR K DATA AND PRINT OUT
C POLYNOMIAL COFFITIFNTS fI51....C|l| AND ERROR FLAG OF SUBROUTINE PLSCF

CALL XPOLS.Y.MCWnRKeW)
49 C COMPUTE A LEAST SUJARI FORTH ORDER POLYNOMIAL FOk ETA DATA AND PRINT OUT

C POLYNOMIAL COEFFITIENtS 0(S)....DIi AND ERRUR FLAG OF SUBROUTINE PLSCF
CALL EPOL|Sl,",0,WORwW)

C EVALUATE K ANO IT|S IRIVATIZVS FROM THE LAST SQUARE POLYNOMIAL
CALL CV (iCPIN. TKXYAYOTY

so C EVALUATE ETA ANU ITr TrPIVATIVES FtOD THE LEAST SQUARE POLYNOMIAL
C ALL EVEETAlW.,D,,'K',OZA.ZA,O'(

C COMPARE THE ACTUAL EXPERIMEN(AL K PATA WITH THE LEAST SQUARE FIT
CALL COPK(SYCRYC, F

C COMPARE THE ACTUAL EKRFRINENIAL ET% DATA WITH THe LEAST SqUARE FIT
So CALL COPETAIS.P.D,R.VC.EZ)

C COMPUTE COMPARISON VALUFl FOR K :ASF 2 (USER SUPPLIEP ROUTINE)
CALL EANA(X.N.AR, PI
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PqOGRA ITNS ?'.ir' OPF.A FIN4 4.?147b 09iZAf19 16.47.42 PAG[

OR I h~ I:

PR I I

o CMP U TE K FOR CASE 2 AND PRINT OUT A COMPARISON TABLE BETWEEN THE CALCULATED
C VALUES AND TOE SUPPLIED COMPARISON VALUES
C

114 PRINT-,-THE FOt.LOING PRINT OUT 11 FROM THE NUMERICAL INTEGRATION-
PRINT-.-SUBROUTINE (OCAOREI AND 14DICATS THAT StNOULARITIES WHERE-
PRTNT',-ANDILEO-
PRINT- :
PRINT#, IER-ERROR FLAGIF 6511 IR b6SINIGULARITIES WHERE SUCCESS

?I @FULLY HANOLiEO.AMY &IHFP VALUE CO4SULt IMSL MANUAL'
PRINT-, X(13-THE CRACK LENGTH FOR WHICH THE ERROR FLAGIZER) IN

*PL Its"
PRINT-,- 0-DISTANCE FROM CRACK Tip RELATIVE TO WIDTN (T/WI FOR

*WHICH THE SINGULAITY WAS OETACT!D
Pr PRINT .

PRINT-,
PRINT- *
00 " I.N
PRINT',:

so PRINT-,"

014.16.*TAtI)3OYA(I)flPIMH-21

149M.1 *C))ZPII'II-)0YfI) I2*AI OAC)CCb~

V-A.
0-.8.00081

EST- OCADRFCFOGAERR,REL'RRERRORIERI
IFlIfR.EO.WI Go TO 21

9 PRIN','IER-".IER
21 CONTI NUE

VA -ES T-V
IF (VA .LE.EPS) ;0 to 16
V. 1ST I

£814 Go To Is
It CONTINUE

ART ITI .EST
CS 4 1 -(AKS(Il-AKC IIJCR4.fAX iI

6 CONTINUE
1891 PRINT-,:

PRINT -
PRINT*,
PRINT, -

PRINT ,-
Its PRINT..-

PR INT', -
PR INTS." RESULTS FOR K UMIFOrtI TENSTOP USING THE WEIGHT FUNCID
ON1 METHOOIK-NOM DIMFNSTONAL'
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0404Ae INS ?4 fo 00T. FIN *.*? 92~9 10.07.02 PAGE 3

RINY*, -

PR '"'::: Al.E - CRACK LENGTH RE.ATIVC To WIDTH-
129PRI T.,- K-EXP VALUES CALCULTEO THROUGH THE WEIGH FUNCTION'
£0PR INI.. K-CAL *SUPPLIED CONPIRISON VALUES-

PitINT* - E RELATIVE ERo IlN

PRINTO. "
14PR?::: - Afto if-EP K-CAL 0I

00 13 I.1.N
PRINT 10.0413 *AKS4II pAK1II,[SI

Is CONIINUE
Is@ STOP-911 or PROGRAM"

[NO

PJNCTION or 741/lI OPT-1 FYN 4.7.7.6 091flro7 16.01.02 PAGE

I FUNCTION Flo)

I XTERNAL P

,!N 011 0 Gt0Rn~-

[NO

PJNCTION P 7',,,' DPr.j FiR b..i.7 NV/zSI79 16.97.42 PAGE

t FUNd ION Pi13
COhMONiDOAN/G.7.,,R,f)9,DC

9 END
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suetOUrIME KPO. 71w7ft OPfI FIN 1..6i8f8/B I.91.02 PACE

I SUBROUTINE KPOL (1.1 M,C,MOAK.WI
DIMENSION 4IY1C43WR()B3

NP M

CALL PLSCFIXY,W.NPPNOEO,NNAXC,IN.KO.RB,NORRIERI
PR INT-,"-
PRINT- ,-

toPRINT-,- INTERPOLATION POLIMOM9AL FOR it -

PR INT'
PRINT', -

PR INT ',"C (SE .,C (5)

Is PRIN#'.C43)".C(3)
PRINT' ,C (Z21,Ct 23
PRINT',C I.C1
PRINT,-

EPRI :Nj E::: ERROR FLAG-SEE ASO ;OMPUTER SUBPROGRAM LIBRARY GUIDE-Z PAG

I SUBROUTINE EPOL(X,Z,M,,ORK,W)
DIMENSION Xf1.'(II ,O(YE ,ORI((I,WlII
NO EG-.
NP .M

9 IN S

CALL PLSCF(X,t,W,NP,NOEG,NIAB,0,N,Xfl, B@,BORVf, 1R)
PR INT *,
PRINT-, -

is PRINT'.: INTERPOLATION POLINOMIAL FOR ETA
PRINT-,
PR IN? ',*O (SE .,O( 5)
PR INT * -O .I ,1 Oi I
PR INY _ Di 3. 1

PRINT *,011) ".O( Il
PR INT-,"
PRINT*P"IER- ERROR FLAC-SEE ASO OMPUTEK SUBPROGRAM LIBRARY GUID(
PR IN? .-IER-.IER

2* RETURN
ENO

SUAIOUTINE EVEK 7?'.? 001-1 FTN 4..7*'.T Rtfl'fr9 16.0y.02 PAGE

SUPROUTrNE EVPSC(E,C .PI,N, YEOyA,(A,aTjl
DIMENSION II,(,YIOA1,A)O(3
00 1 I-iN

S ~~~YAiIY I3EIPl.

RE TUR N
(No
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SUsOVUTINE COPK 74./74 OPT-I PTH 0..AT4 *A/26/?9 10.7.02 PAGE

i SUBROUTINE COPK(XY.CltYCEVT

DIMENSION 3IIII( *C('hAC(IhEV(I.
00 18 1.1,.
YC4II SC A3.AI..4.*CIAI.A(Ij ) '3.:I)9A(1ItZ.e~Ctz)A(I( *CIIJ

s to FT (I) - YC (Il-1 (1) )-too IV (I)
PRINT'," -

PR INT-*. -
PRINT -"
PRINT -

-

to PRINT-t"COMPERISON OF ACTUAL OAT% TO INTERPOLATED DATA"
PRINT-.- -

PRINT",- A/W - CRACK LENGTH Rt.ITIVE TO WIDTH -

PR NT. K-EXP ACTUAL OATA"
PRINT :, K-CAL INTERPOLATED )ATA*

Is PRINT'," E RELATIVE ERRO4 IN X"
PRINT"." -
PRINT-" -

PRINT9," 44W K-EAP K-CAL f "
PRINT*," -

22I DO 4 1-1."

4 CONTI NUE

RET )N

25 END

SUBIOUTZNI COPEIA 7 1. O'T"1 FTN 4.TVA $9/20T9 1.07.02 PAGE

I SURPOUTINE COPETA(X,?, 0H7C ,EZ)
DIMENSION AI) , '. ( r)C(I) E!(t)

DCII -0 s(5 I) *'Iee..O (I )9 A (?)3*3 III) A (Il'' 240(2) 'III) .0(t)
S 19 EIII-z(AC (II-I)"SO.

e
9Z(I)

PR INT - "
PRINT-,- -
PRINT-,- -

PR INT-,-. "
Is PRINT-COMPERISON OP ACTUAL OAT% TO INTERPOLATED DATA"

PR INT , - -
PPINI"." A/V - CRACK LENGTH RE.ATIVE TO WIDTH -

PRINT-," ETA-CXP ACTUAL DATA"
PRINT-," ETA-CAL INTrRPDLATED )AT4"

Is PRINT',- I RELATIVE ERROA IN X
PRINT',"
PRINT-,"
PRINT.""-
PRINT ." A/ ETA-EAP ETA-CAL E "

to PRINT',-
00 7 I.AtBV
PRINT 9,EXII.Z(I),?C t1 ),EZl

S FORRAT(IX,IPA.AAAIPSo.A,~TAPOeb,ZVIPA.2)

7 CONTINUE
29 RETURN

END
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SUSIOUTIME EVEETA Y17I Opy.1 IFIN 4.?OkTB *AIZO/19 14.6r.82 PAGE

I SUBROUTINE EVEETA(XvDHNlKOZAZA.Ofl
DIMENSION (,'tZfOAIA)D?1
DO S I.I.N

O ZA(I)- l/I(7ZIYI.K)
RETURN

SUP113UTIME K(AMA 71,/14 00f.I FTN 4.7#06A *'VIZAI'9 ISS.PAGE

I SUBROUTINE KAPA(V,N,AI'(PZ)
DIMENSION X(II.AXII)
00 20 I.I,k

#A*.I(I)*PI?.

RE TURN
END
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RESULTS

INTERP)LATION POLINONIAL FOR K

cis. .79:479 137 21

C(6.9.557'602

I:R- ,ERROR FLAG-SEE ASO COMPUTER SUBPROGRAM LIBRARY GUIDE

INTERPSI.ATIOH POLINOMIAL FOR ETA

O's3. R3785059491
0(4).-2.;5 r 3 ?33 ,
D4)i .157,50 . 8959

oil). 3 952 665733928 6
TER- RRRLG-SEE ASO COMPUTER SUBPROGRAM LIRRARY GUIDE

COMPERISOM 0' ACTUAL DATA TO INTERP&LA1EO DATA

A/W CRAKc LENGTH RELATIVE TO WIDTH
5-CO~PA ETUA. L CATA
K-CAL I "rERPOLATED DATA
E RELATIVE ERROR IN X

A/W K-EXP K-CAL E

13 .90?3 . 4:7S.34
.1,*66 Y.7 .9776 -7.56

.2 1.0572 1.0565 -.,ZA

.?b26 1.110 1.1768 -.69

.2666 1.106:2 1.1766 -.9S

.3096 t.2366b 1.2590 1..1
.3465 1.3490 1.3244 -1.8

.3976 L.3804 1.408b 2.062

.36: 1.6306 1.6696 2.16

.6760 1:'646 1:51,24 -1.62
:44 93 b1.6551 1.5710 -5.08
.5788 1.1 1 .8774 1.59
.6 46? 21466 2.3688 .
.?S1r 3.4513 3.9.13 -.25
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COMPERISON O ACTUAL DATA TO INIERPOLATED DATA

A/W - CRA.K LENGTH RELATIVE TO N2OTH
ETA-TXP A..UAL OATA
ETA-CAL 1TERPOLATEO DATA

E RELATIVE ERROR IN X

A/W ETA-rXP ETA-CAL E

:164 1.94, 1.9500 .31r
.1586 0.6A43 1.6491 -.9
.206. ,685 1.6334 -3.09 
.2326 L.6163 1.6a79 4.43
.2646 1.6950 1.7933 5.60
.2666 1,8796 1.&011 -4.18 
.3096 1.9961 1.9923 -. 19
.3410 2.1660 f. 2.13 75
.3978 2.6055 4a 4 , 4,?

.4360 ,.F493 2.7696 .74
1468 3.063Z 3.1251 2.02

.4893 3.2866 3.640 -. 66

.570 4.5933 4.6431 1.05

.646? 6.1244 6.1721 -. 1:

.7517 12.0980 Z.OAZ .06

THE FOLLOING DRINT OUT IS FROM THE NUMERICAL INTEGRATION
SUBROUTINEI DRE) AND INOICATS THAT SINGULARITIES WHERE
HANOLED

IER-ERROR FLAGIF 65 OR 66 -SINGULARITIES WHFRE SUCCESSFULLY HANOLEOANY ATHER VALUE CONSULT INSL MANUAL
X(II. THE CAACK LENGTH FOR WHICH THE ERROR FLAG(IER) IEPLIES

O10OSTANCE FROM CRACK TIP RELATIVE TO WOTH (T/WI FOR WHICH THE SINGULARITY WAS OETACTED

.. WARNING WIH FX ERROR 41ER - 65) FROM IMSL ROUTINE OC4ORE
X(1)..1

0-1.El11
IER-65

WARNING 4ITH FIX EPR8R (ERA - 65) FROM 1NTL ROUTINE [CODRE

0.1 E-1z
I ER=A5

.. * WARNING WITH FIX ERROR (IE - 65) FROM INSL ROUTINE OCORE

12 .I 1 I!t5
0.i.F - 10
IER-A5
--- WARNING 11TH FIX ERROR ilER - 65) FRON INSL ROUTINE OCAORE
A(21.,15
0.I .E- 11
IER-65
e WARNING 4ITH FOX ERROR (IER - 65) FROM l"SL ROUTNW IC0RE

.1,E-12
IER 65
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MARNING 411M FIX ERROR (TER - bE) FROM INSL ROUTINE OCAORE
1(319.2

Oil.E-:0

WARNING WITH FIX ERROR (TER - 6S) FRO" IMSL ROUTINE OCADRE
XI3);Z
0.1.E-11
1 R6,I

W** WARNING WITH FIX ERROR (IER - 65) FROM IMSL ROUTINE OCAORE
X43).,t

G-I.,:-Z
I ER-65

' WARNING WITH FIX ERROR hIER 9 6SI FROM IMSL ROUTINE OCAORE
X143. .S
G.T.E-AGX ER) .AS

** WARNING WITH FIX ERROR (IER * 65S FROM IStL ROUTINE MCAORE
X 4);,25
O!1:6Et 1,
I ER-tA5
TER WARNING WITH FIX ERROR (TER S1 FROM INSL ROUTINE OCADRE
X 41 , IS
O-*I *E- 2

I ER 

4

M;JNARNINC WITH FIX ERROR (IER - II) FRO" INSL ROUTINE OCADRE

O- .E-9
IE R65

W** WARMING 11TH FIX ERROR tIER - AS) FROM INSL ROUTINE OCAORE

X(S).3

0.1 * 3-1O 1.E-92

IER-65
* WARNING 41TH FIX ERROR (lER 65) FROM INSL ROUTINE OCAORE
XI5)..

I ER .65
*• WARNING WIzEn FIX ERROR tIER * 653 PROM INTL

/ 
ROUVtINE OCADRE

X(Sl., 3

*e WARNING WIT" FIX ERROR (TER - AS) FRO INSL ROUTINE OCADRE

X(6)•.$S

a I l..-35

IERt6S
** WARNING WITH FIX ERROR tIER - 6S) FROM INL ROUTINE OCAORE
X161*.3S
0-I.E-IS

IER .65
eM ARIIING WITH FIX ERROR (|hR * AS) FROM INTL ROUTINF OCAORE

I (63 ..35
0.1.E-I
I ER-AR

R* 6WARNING WITH FIX ERROR (1ER 
I 

651 FRON IMSL ROUTINE DCDRE
X4)-.35

I-tI
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4

I ER .65
..WARNING WITN FIX ERROR LIEN 651 FROM ITL ROUTINE OCADRE

.R WIRN114G WIdTH FIX ERROR |Z[R - 651 FROM IHSL ROUTINE €)CADRE

I ER.65

**WARNING WITN FIX ERROR LIE *R 65) FROM INTL ROUTINE OCADRE

XLJI.4

*~WARNING WIEN FIX ERROR hEFR *65) FROM INSL ROUTINE OCAIRE

Ofl.E-X?

I ER 65o WARNING WITH FIX ERROR TIER * 65) FROM ONSL ROUTINE OCADRE
XLR)..45
0.1 t.E-
I ER,65
*. WARNING MIT FEX ERROR LIER * 65) FROM INSL ROUTINE OCAIRE

X(als.45

04I.E-iN

0;1=6 9

*je WARNING ITH FIX ERROR LIER * 65) FROM INSL ROUTINE OCADRER S
X (8).45

IER-65 

I

!.. WARNING WIEN FIX ERROR IZER a 65) FROM INSL ROUTINE OCADRE

O 1 .E5

115=R65
*~WARNING WIEN FIX ERROR LIENR 65) FROM INSL ROUTINE OCADRE

XL-I.5I

IERs6s
* ARNIMNG WIH FIX ERROR LIEN a 65) FROM INtL ROUTINE OCADRE

"; 55.
I ER.-5

*' WARNING MTH FIX ERROR (IER 8 6S) FROM IML ROUTINE OCACRE
XL) .55
0.1 E-9I
I ER-6
#- WARNING WIEH FIX ERROR IIER - 65) FROM INSL ROUTINE OCAIRE

QI It5I R -65
"0 WARNING MIEH FIX ERROR LIER * 65) FROM IMtL ROUTINE OCACRE

XII)aSS

0111.-I

IER,6S

!.R WARNING MITH FIX ERROR (ER - 65; FROM IlqtL ROUTINE OCIRE

ee WAkRNING LIEN FIX ERROR LIEU * 65; FRflM IM L~ ROUTINR ICAIRE

XIt)-.6
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WARNING WITH FIX ERROR lIAR * 6S) FROM INSL ROUTINE OCAORA
KI113:.6

RWARNING WITH PIX ERROR UER - 653 FRO" INSL ROUTINE OCADRE

IER .6
*-- WARNING WITH FIX ERROR (IER 6 65) FROM INSL ROUTINE OCADRE

XI121-.65

** WARNING WITH FIX ERROR (TER 
i 

65) FROM INSL ROUTINE OCADRE

1 12). 6s
!1. E-;i

eeWARNING WlITH FIX ERROR (ItR 66i) FROM 104SL ROUTINE •CADRE

X(123). 65

*9 WARNING WITH FIX ERROR (TER * 66) FROM INSL ROUTINE DOCDRE

X0.1 ., ?

I ERE-9** WARNING WITH FIX ERROR lIAR * 66) FROM INSL ROUTINE OCADRE0O1 .E-W

IER-66
9** WARNING WITH FIX ERROR ITER * 66F PROM INSL ROUTINE OCADRE

11133*.

I R66

* WARNING WITH FIX ERROR (IER - 66) FROM INSL ROUTINE OCADRE

1(133..?

I AR 66

9** WARNING WITH FIX ERROR (ITR - 663 FROM INSL ROUTINE OCADRE

3(133m.

0. .E-11
IER-66

*9* WARNING WITH FIX ERROR lIAR - 65) FROM ISSL ROUTINE nCADRE

111639.5

e WARNING WITH P1K ERROR (TAR 
i 

653 PROM 13(SL ROUTINE OCADRE

*9e WARNING WITN FIX ERROR lIAR * 653 PROM INIL ROUTINE OCADRA

131439.75

0.1 .E-tOS

*9e WARNING WITH P1K ERROR lIAR * 65) PROM IN L ROUTINT ICADRA
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'** WA"RNING WITH FIX EkROR 1IEN - 663 FROM INSL ROUTINE OCACRE

0O1 .E-8

*** ,WARNING WITH FIX ERROR IIER - 66b FROM IHFL ROUTINE OCADRE

"WARNING WI1TH FIX ERROR (ZEN - 663 FROM IMNKL ROUTINE OC40RE

**WARNING WITH FIX ERROR (IER - 643 FROn INSL ROUTINE OCADRE
X4 153 .

ZER-66

RESULTS FOI K UNIFORM TENSION USING THE VEICHT FUNCT13N AETHODIK-NON DIMENSIONAL

A/W -CACK LENGTH RELATIVE TO WIDTH
. -E X; CV LUS C AL CULA TED THMRO UGH THE WEIG14 FUNCTION
K-CAL -StRRLIEO COIIPERISON VALUES

- RELATIVE ERROR IN

A/W K-EXP K-CAL E -

.100 Z.205 1.1957 4.26i
.1,00 1.26 97 1.2662 :12
.200 1..01 1 03667 2.71,
.2500 I1.5 40 t.494,1 4.0
.3000 .055 1.65 .1.8

.3500 1.170. 1.85:5 -2.13

.1,000 ... 7 2.,10 . 24 .

.191 .21 2.4,741 -5.4.
.5000 27719 2.74 -. 9

.50 .1523.386 3.70z
.4000 5.313 .4.9,2 7.91

.0000 1.1832 4.1715 -1.02.7530 4.6462 8 .1,809 -19 .1,.66 P.31606 11.9924 -36.79
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APPENDIX E

CRACK SHAPE--CONICAL APPROXIMATION

Following Orange (Reference 11), the shape of a crack can be

approximated by a conic section equation. Requiring that the crack

opening at the crack mouth will match the actual crack mouth opening

no, one can write a general form for the conic section; equation;

0 (2+m) 2+m (E-1)

aI

Figure E-1. Crack Opening Conical Approximation

where t is the distance from the crack tip, a is the crack length, and r

is the conic section coefficient to be determined. The type of conical

section depends on m if

< 0 - ellipse

= 0 - parabola

O<m<c - hyperbola

M O - a pair of straight lines
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In order to determine the unknown conic section coefficient m,

match the radius of curvature at the crack tip from the Equation E-1 to

the curvature resulting from the crack tip displacement field as expressed

in Equation 16.

Using the following definition for the curvature of a two-dimensional

curve defined by

y = f(x) (E-2)

the curvature K is given by

d 2 x

dy
2

K:

and the radius of curvature is

= [~](E-4)
provided K # 0

If one uses the near crack tip displacement field from Equation 16,

t H2  (E-5)
8K I r

t _ 7TH
2

;n 4KI  Y' (E-6)

and at the crack tip

ri =0

t : 0.
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From Equation E-6

at0
an -(E-7)

r1=O

Also from Equation E-6

22a't wH 2

a, 4KI  (E-8)

Substituting Equations E-7, E-8 into Equation E-3 and then using Equation 4
E-4, the radius of curvature at the crack tip from the crack tip displace-

ment field is

4KI
2 (E-9)

rTH 2

Now find the radius of curvature from the conic section Equation E-l

20 2 + ; 0 2
n- 2 °=t -n2 t I

(2+m) a (2+M) a2  (E-10)

Differentiate twice with respect to n

2 2

2n = 0 at + 0 t • at (E-11)
(2+mn)a (2+m)a2

2 2 22n 2 ; 2 t a2t (E-12)
2°° a~t+ t

2 = (2+m)a an2  (2+mr)a 2  t) T) 2

From Equations E-ll and E-12 at the crack tip

t=O, r1Q
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The value
0

a2t_
an

__t - (2+m~)a ,

and 2 no2  (E-13)

If Equations E-3 and E-4 are used, the radius of curvature at the tip of

the conic section is

o 2

R 0 (E-14)
(mn+2) a

Now, matching the radius of curvature at the crack tip of the conic section

(Equation E-14) to he one that is derived from the crack tip displace-

ment field Equation E-9, one can determine the conic section coefficient

2
,oH

= ( a~) -2 (E-15)

Thus, following Orange and substituting the stress intensity factor KI,

with the nondimensional stress intensity factor Y defined by the relation

K = a va-

The value of m becomes;
2

[= a] -2 (E-16)

where
- K (E-17)
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